1 True/False

1.	True	False	When we solve a problem one way, it is not useful to try to solve it in a second way because we already did the problem.
2.	True	False	In general, it is harder to handle balls-into-boxes problems where the boxes are indistinguishable than where the boxes are distinguishable.
3.	True	False	The number of ways to distribute b distinguishable balls into u distinguishable urns is $u!S(b, u)$ and the answer was obtained by solving first the same problem with indistinguishable urns and then labeling (or coloring) the urns to make them distinguishable.
4.	True	False	The equation $x_1 + x_2 + x_3 + x_4 = 10$ in natural numbers where the order of the variables does not matter has as many solutions as the number of ways to split 10-tuplets (10 identical kids) into 4 identical playpens, where each playpen has at least one kid.
5.	True	False	We need to add several Stirling numbers of the second kind in order to count the ways to distribute distinguishable balls to indistinguishable boxes because all situations split into cases according to how many boxes are actually non-empty.
6.	True	False	The direct formula for the Stirling numbers of the second kind can be derived using P.I.E., and this proof must be memorized in order to do well in this class.
7.	True	False	We can prove the recursive formula for the Stirling numbers in a way very similar to the basic binomial identity $\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$ by selecting one special object and discussing the two possible cases from its viewpoint.
8.	True	False	Two problem types in the 12-fold way table have extremely simple an- swers because an injective function cannot have a smaller domain than co-domain.
9.	True	False	An algorithm is a finite sequence of well-defined steps that always lead to the correct (desired) output.
10.	True	False	The Quick Sort algorithm is, on the average, faster than the Bubble Sort algorithm because the number of inversions in the list being sorted increases faster during the Quick Sort algorithm.

11.	True	False	In class, we defined an inversion as two adjacent elements in a list that are out of order.
12.	True	False	The maximal possible number of inversions in a list of 10 number is $P(10, 2) = 90$ while the minimal such number is 1.
13.	True	False	A stable matching between n jobs and n people means that even if some person A prefers a job B on this list of jobs that he has not been given, the company that offers job B has hired another person C on it that they prefer to person A.
14.	True	False	The number of roommate pairings among 2018 people can be written as $2017 \cdot 2015 \cdot 2013 \cdots 3 \cdot 1$ or alternatively also as $\frac{2018!}{2^{2018}1009!}$.
15.	True	False	It is never possible to pair up 2018 people into stable roommate pairs because, even if we manage to pair up 2014 of them in stable pairs, there will always be 4 of them to produce a counterexample of an impossible stable pairing.
16.	True	False	To show that something is possible, it suffices to provide just one way of doing it, but to show that something is always true, we need to provide a proof that works for all cases.
17.	True	False	The stable marriage algorithm produces the same final stable pairing, even if we reorder the "men" or if we switch the places of "men" and "women".
18.	True	False	An argument by contradiction can be avoided if we are careful not to make mistakes in our proof.
19.	True	False	Within MMI, the inductive step "If S_n is true then S_{n+1} is also true." implies that S_{n+1} is true.
20.	True	False	When making the inductive hypothesis "Suppose S_n is true." we need to say "for some n "; yet, we cannot specify a particular number for n here.
21.	True	False	At the end of a successful application of MMI, we conclude that S_n is true for some particular n 's.
22.	True	False	If we do not know the final precise answer to a problem, we cannot apply MMI until we conjecture what this answer is.
23.	True	False	"Harry Potter is immortal." is not suitable for a proof by MMI, but it can be paraphrased into such a suitable statement.
24.	True	False	It is never necessary to show the first several base cases in a proof by MMI; indeed, we do this just to boost our confidence in the truthfulness of the statement of the problem and we need to show only that the first base case is true.

 discs on one of the three poles cannot be solved, whether by MMI other methods. 27. True False Sending off newly-married couples to different honeymoon locati around the universe will provide a counterexample for the even vers of the "Odd-pie fight" problem. 28. True False The "complement" property of probabilities, P(A) = 1 - P(A) for a A ⊆ Ω, should be added to the definition of the probability space (Ω, because it is fundamental and always works. 29. True False When calculating the probability P(A) for some event A ⊆ Ω on "equally likely" finite probability space (Ω, P), we can simply cot the number of outcomes of A (the good possibilities) and divide that all outcomes in Ω (all possibilities). 30. True False It is incorrect to say that the elements of Ω are "outcomes" since the are actually inputs of the probability P, and not outputs. 31. True False The probability function P is defined as P : Ω → [0, 1] such that P(Ω 1, P(Ø) = 0, and P(A ∪ B) = P(A) + P(B) for any disjoint subsets and B of Ω. 32. True False The formula [^N/_A] appears when calculating the probability of a natumber n ≤ N to be divisible by d. 33. True False If we experiment with throwing two fair dice and adding up the tovarious non-overlapping A, B ⊆ Ω. 34. True False If we experiment with throwing two fair dice and adding up the tovares on the dice, and if we decide to represent the outcome space Ω the set all of possibilities for the sum; i.e., Ω = {2, 3,, 12}, then corresponding probability P will not be the "equally likely" probabili making us reconsider the choice of the outcome space Ω in the f place. 35. True False The property P(A ∪ B) = P(A) + P(B) - P(A ∩ B) for any A, B ⊆ N. 	25.	True	False	Within the inductive step of a proof by MMI, we may occasionally need to use $S_{n-1}, S_{n-2}, S_{n-3}$, or some previous S_k (instead of S_n) in order to prove S_{n+1} .
 around the universe will provide a counterexample for the even vers of the "Odd-pie fight" problem. 28. True False The "complement" property of probabilities, P(A) = 1 - P(A) for a A ⊆ Ω, should be added to the definition of the probability space (Ω, because it is fundamental and always works. 29. True False When calculating the probability space (Ω, P), we can simply cot the number of outcomes of A (the good possibilities) and divide that all outcomes in Ω (all possibilities). 30. True False It is incorrect to say that the elements of Ω are "outcomes" since the are actually inputs of the probability P, and not outputs. 31. True False The probability function P is defined as P : Ω → [0, 1] such that P(Ω 1, P(Ø) = 0, and P(A ∪ B) = P(A) + P(B) for any disjoint subsets and B of Ω. 32. True False The formula [^N/_A] appears when calculating the probability of a natu number n ≤ N to be divisible by d. 33. True False MMI is not really necessary to formally prove the property P(A₁ ∪ A ∪ A_n) = P(A₁)+P(A₂)++P(A_n) for pairwise disjoint A_i's beca the property is quite intuitive and, to prove it, we can just apply over a over again the basic property of probabilities P(A ∪ B) = P(A) + P(B) for various non-overlapping A, B ⊆ Ω. 34. True False If we experiment with throwing two fair dice and adding up the d values on the dice, and if we decide to represent the outcome space Ω 35. True False The property P(A ∪ B) = P(A) + P(B) - P(A ∩ B) for any A, B ⊆ is true for any probability P will not be the "equally likely" probabilit making us reconsider the choice of the outcome space Ω in the f place. 35. True False The property P(A ∪ B) = P(A) + P(B) - P(A ∩ B) for any A, B ⊆ is true for any probability P will not be the "equally likely" probabilit making us reconsider the choice of the outcome space Ω in the f place. 	26.	True	False	Since the world will never end, the Tower of Hanoi problem for 64 initial discs on one of the three poles cannot be solved, whether by MMI or other methods.
 A ⊆ Ω, should be added to the definition of the probability space (Ω, because it is fundamental and always works. 29. True False When calculating the probability P(A) for some event A ⊆ Ω on "equally likely" finite probability space (Ω, P), we can simply conthe number of outcomes of A (the good possibilities) and divide that all outcomes in Ω (all possibilities). 30. True False It is incorrect to say that the elements of Ω are "outcomes" since that are actually inputs of the probability P, and not outputs. 31. True False The probability function P is defined as P : Ω → [0, 1] such that P(Ω 1, P(∅) = 0, and P(A ∪ B) = P(A) + P(B) for any disjoint subsets and B of Ω. 32. True False The formula [^N/_A] appears when calculating the probability of a natur number n ≤ N to be divisible by d. 33. True False MMI is not really necessary to formally prove the property P(A₁ ∪ A ∪A_n) = P(A₁)+P(A₂)++P(A_n) for pairwise disjoint A_i's becard the property is quite intuitive and, to prove it, we can just apply over a over again the basic property of probabilities P(A ∪ B) = P(A) + P(A) = P(A) + P(B) = P(A) + P(A) = P(A) + P(B) = P(A) + P(A) = P(A) + P(B) = P	27.	True	False	Sending off newly-married couples to different honeymoon locations around the universe will provide a counterexample for the even version of the "Odd-pie fight" problem.
 "equally likely" finite probability space (Ω, P), we can simply conthe number of outcomes of A (the good possibilities) and divide that all outcomes in Ω (all possibilities). 30. True False It is incorrect to say that the elements of Ω are "outcomes" since the are actually inputs of the probability P, and not outputs. 31. True False The probability function P is defined as P : Ω → [0, 1] such that P(Ω 1, P(Ø) = 0, and P(A ∪ B) = P(A) + P(B) for any disjoint subsets and B of Ω. 32. True False The formula [N/d] appears when calculating the probability of a nature number n ≤ N to be divisible by d. 33. True False MMI is not really necessary to formally prove the property P(A₁ ∪ A ··· ∪ A_n) = P(A₁)+P(A₂)+···+P(A_n) for pairwise disjoint A_i's becat the property is quite intuitive and, to prove it, we can just apply over a over again the basic property of probabilities P(A ∪ B) = P(A) + P(G) = P(A) + P(B) = P(A) + P(G) = P(A) + P(G) = P(A) + P(B) = P(A) + P(28.	True	False	The "complement" property of probabilities, $P(\overline{A}) = 1 - P(A)$ for any $A \subseteq \Omega$, should be added to the definition of the probability space (Ω, P) because it is fundamental and always works.
 are actually inputs of the probability P, and not outputs. 31. True False The probability function P is defined as P : Ω → [0, 1] such that P(Ω 1, P(Ø) = 0, and P(A ∪ B) = P(A) + P(B) for any disjoint subsets and B of Ω. 32. True False The formula [N/d] appears when calculating the probability of a naturumber n ≤ N to be divisible by d. 33. True False MMI is not really necessary to formally prove the property P(A₁ ∪ A ∪ A_n) = P(A₁)+P(A₂)++P(A_n) for pairwise disjoint A_i's becare the property is quite intuitive and, to prove it, we can just apply over a over again the basic property of probabilities P(A ∪ B) = P(A) + P(A) for various non-overlapping A, B ⊆ Ω. 34. True False If we experiment with throwing two fair dice and adding up the t values on the dice, and if we decide to represent the outcome space Ω the set all of possibilities for the sum; i.e., Ω = {2, 3,, 12}, then corresponding probability P will not be the "equally likely" probabil making us reconsider the choice of the outcome space Ω in the f place. 35. True False The property P(A ∪ B) = P(A) + P(B) - P(A ∩ B) for any A, B ⊆ is true for any probability space (Ω, P) , but it can be proven us baby P.I.E. only when P is the "equally likely" probability on a fir outcome space Ω , while a more general argument is needed for ot 	29. '	True	False	When calculating the probability $P(A)$ for some event $A \subseteq \Omega$ on an "equally likely" finite probability space (Ω, P) , we can simply count the number of outcomes of A (the good possibilities) and divide that by all outcomes in Ω (all possibilities).
 1, P(Ø) = 0, and P(A ∪ B) = P(A) + P(B) for any disjoint subsets and B of Ω. 32. True False The formula [^N/_d] appears when calculating the probability of a naturumber n ≤ N to be divisible by d. 33. True False MMI is not really necessary to formally prove the property P(A₁ ∪ A ∪ A_n) = P(A₁)+P(A₂)++P(A_n) for pairwise disjoint A_i's becare the property is quite intuitive and, to prove it, we can just apply over a over again the basic property of probabilities P(A ∪ B) = P(A) + P(A	30.	True	False	It is incorrect to say that the elements of Ω are "outcomes" since they are actually inputs of the probability P , and not outputs.
 number n ≤ N to be divisible by d. 33. True False MMI is not really necessary to formally prove the property P(A₁ ∪ A ∪ A_n) = P(A₁)+P(A₂)++P(A_n) for pairwise disjoint A_i's beca the property is quite intuitive and, to prove it, we can just apply over a over again the basic property of probabilities P(A ∪ B) = P(A) + P(A for various non-overlapping A, B ⊆ Ω. 34. True False If we experiment with throwing two fair dice and adding up the t values on the dice, and if we decide to represent the outcome space Ω the set all of possibilities for the sum; i.e., Ω = {2, 3,, 12}, then corresponding probability P will not be the "equally likely" probabil making us reconsider the choice of the outcome space Ω in the fiplace. 35. True False The property P(A ∪ B) = P(A) + P(B) - P(A ∩ B) for any A, B ⊆ is true for any probability space (Ω, P), but it can be proven us baby P.I.E. only when P is the "equally likely" probability on a fir outcome space Ω, while a more general argument is needed for ot 	31. '	True	False	The probability function P is defined as $P : \Omega \to [0, 1]$ such that $P(\Omega) = 1$, $P(\emptyset) = 0$, and $P(A \cup B) = P(A) + P(B)$ for any disjoint subsets A and B of Ω .
 ∪ A_n) = P(A₁)+P(A₂)++P(A_n) for pairwise disjoint A_i's becan the property is quite intuitive and, to prove it, we can just apply over a over again the basic property of probabilities P(A ∪ B) = P(A) + P(A) for various non-overlapping A, B ⊆ Ω. 34. True False If we experiment with throwing two fair dice and adding up the tovalues on the dice, and if we decide to represent the outcome space Ω the set all of possibilities for the sum; i.e., Ω = {2, 3,, 12}, then corresponding probability P will not be the "equally likely" probability making us reconsider the choice of the outcome space Ω in the fiplace. 35. True False The property P(A ∪ B) = P(A) + P(B) - P(A ∩ B) for any A, B ⊆ is true for any probability space (Ω, P), but it can be proven us baby P.I.E. only when P is the "equally likely" probability on a fir outcome space Ω, while a more general argument is needed for ot 	32.	True	False	The formula $\left\lceil \frac{N}{d} \right\rceil$ appears when calculating the probability of a natural number $n \leq N$ to be divisible by d .
values on the dice, and if we decide to represent the outcome space Ω the set all of possibilities for the sum; i.e., $\Omega = \{2, 3, \dots, 12\}$, then corresponding probability P will not be the "equally likely" probabil making us reconsider the choice of the outcome space Ω in the fi- place. 35. True False The property $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ for any $A, B \subseteq$ is true for any probability space (Ω, P) , but it can be proven us baby P.I.E. only when P is the "equally likely" probability on a fir outcome space Ω , while a more general argument is needed for ot	33. '	True	False	MMI is not really necessary to formally prove the property $P(A_1 \cup A_2 \cup \cdots \cup A_n) = P(A_1) + P(A_2) + \cdots + P(A_n)$ for pairwise disjoint A_i 's because the property is quite intuitive and, to prove it, we can just apply over and over again the basic property of probabilities $P(A \cup B) = P(A) + P(B)$ for various non-overlapping $A, B \subseteq \Omega$.
is true for any probability space (Ω, P) , but it can be proven us baby P.I.E. only when P is the "equally likely" probability on a fir outcome space Ω , while a more general argument is needed for ot	34. '	True	False	If we experiment with throwing two fair dice and adding up the two values on the dice, and if we decide to represent the outcome space Ω as the set all of possibilities for the sum; i.e., $\Omega = \{2, 3, \ldots, 12\}$, then the corresponding probability P will not be the "equally likely" probability, making us reconsider the choice of the outcome space Ω in the first place.
	35. '	True	False	The property $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ for any $A, B \subseteq \Omega$ is true for any probability space (Ω, P) , but it can be proven using baby P.I.E. only when P is the "equally likely" probability on a finite outcome space Ω , while a more general argument is needed for other (Ω, P) .

36.	True	False	The "defective dice" problem from the Discrete Probability handout does not have a unique solution; i.e., there is another second die that can yield, together with the original defective die, the same probabilities for the sums of the values on the two dice as two normal fair dice.
37.	True	False	In the Monty Hall Problem with n doors (for any $n \ge 3$) we should switch doors (after the host opens a non-winning door) because with this strategy the probability of winning is $\frac{n-1}{n(n-2)}$; however, for $n = 2$ this formula makes no sense and, moreover, half of the time the game itself is impossible to complete as designed for $n = 2$.
38.	True	False	It may not be possible to calculate $P(A \cap B)$ using just $P(A)$ and $P(B)$, but if we also know one of $P(A B)$ or $P(B A)$, we can do it!
39.	True	False	P(A B) can never be equal to $P(B A)$ unless $P(A) = P(B)$.
40.	True	False	The formula $P(A) = P(A B) \cdot P(B) + P(A \overline{B}) \cdot P(\overline{B})$ works for any events $A, B \subseteq \Omega$, as long as $P(B) > 0$.
41.	True	False	Despite the suggestive notation, the conditional probability $P(A B)$ was originally defined through a formula and we had to prove that it indeed is in [0, 1] in order to consider $P(A B)$ as an actual probability.
42.	True	False	To prove the Probability "Baby P.I.E." property $P(A \cup B) = P(A) + P(B) - P(A \cap B)$, one could split $A \cup B$ on the LHS into three disjoint subsets, similarly split on the RHS A and B each into two subsets, cancel, and match the resulting probabilities on the two sides.
43.	True	False	When considering conditional probability, we are restricting the original outcome space Ω to a smaller subspace B given by the condition of something having happened.
44.	True	False	When $A \subset B$, the conditional probability $P(A B)$ can be expressed as the fraction $\frac{P(A)}{P(B)}$ (given all involved quantities are well-defined).
45.	True	False	Bonferroni's inequality $P(E \cap F) \ge p(E) + P(F) - 1$ is, in disguise, the well-known fact that $P(E \cup F) \le 1$.
46.	True	False	When selecting at random two cards from a given 6-card hand (from a standard deck) that is known to contain 2 Kings, it is more likely to end up with at least one King than no King.
47.	True	False	When selecting at random two cards from a given <i>n</i> -card hand (from a standard deck) that is known to contain 2 Kings, the smallest <i>n</i> for which it is more likely to end up with no King than with at least one King is $n = 8$.

2 Problems

- 48. How many ways can you rearrange the letters in BERKELEY?
- 49. There are 72 students trying to get into 3 of my sections. There are 27, 20, 25 openings respectively. How many ways are there for these students to enroll?
- 50. How many ways can I put 20 Tootsie rolls into 5 goodie bags so that each goodie bag has at least 2 Tootsie roll?
- 51. Show that when you place 9 coins on an 8×10 boards, at least two coins must be on the same row.
- 52. How many license plates with 3 digits followed by 3 letters do not contain the both the number 0 and the letter O (it could have an O or a 0 but not both).
- 53. Prove that $\sum_{k=0}^{n} 5^{k} \binom{n}{k} = 5^{0} \binom{n}{0} + 5^{1} \binom{n}{1} + \dots + 5^{n} \binom{n}{n} = 6^{n}.$
- 54. How many ways can I split up 30 distinguishable students into 6 groups each of size 5?
- 55. Find a formula for $1 + 2 + 4 + \cdots + 2^n$ and prove it.
- 56. How many 5 digit numbers have strictly increasing digits (e.g. 12689 but not 13357).
- 57. How many 5 digit numbers have increasing digits (you can have repeats e.g. 12223 or 22222)?
- 58. A 7 phone digit number $d_1d_2d_3 d_4d_5d_6d_7$ is called memorable if $d_1d_2d_3 = d_4d_5d_6$ or $d_1d_2d_3 = d_5d_6d_7$. How many memorable phone numbers are there?
- 59. How many people do you need in order to guarantee that at least 3 have the same birthday?
- 60. How many 5 letter words have at least two consecutive letters are the same?
- 61. Prove that $1 + 3 + 5 + \dots + (2n 1) = n^2$ for all $n \ge 1$.
- 62. How many ways can I put 60 seeds in 10 indistinguishable boxes so that each box has at least 3 seeds?
- 63. I have 4 indistinguishable blue coins and 4 indistinguishable gold coins. How many ways can I stack them?
- 64. When I go to CREAM, I order 4 scoops of ice cream out of 10 possible flavors (I can get more than one scoop of a flavor)?
- 65. Show that in a class of 30 students, there must exist at least 10 freshmen, 8 sophomore, 8 juniors, or 7 seniors.
- 66. How many ways can I buy 24 donut holes if there are 8 different flavors?

- 67. How many ways can I split 200 indistinguishable donut holes into 8 non-empty bags? (The bags are indistinguishable)
- 68. How many ways can I split 200 indistinguishable donut holes into at most 8 bags? (The bags are indistinguishable)
- 69. I have 5 identical rings that I want to wear at once. How many ways can I put them on my hand (10 fingers) if each ring must go on a different finger?
- 70. Suppose that Alice chooses 4 distinct numbers from the numbers 1 through 10 and Bob chooses 4 numbers as well. What is the probability that they chose at least one number in common?
- 71. How many positive integers less than 10,000 have digits that sum to 9?
- 72. I am planting 15 trees, 5 willow trees and 10 fir trees. How many ways can I do this if the two willow trees cannot be next to each other?
- 73. How many ways can we put 5 distinct balls in 20 identical bins?
- 74. How many ways can I distribute 30 Snickerdoodle cookies and 20 chocolate chip cookies to 25 students if there is no restriction on the number of cookies a student gets (and some students can get none)?
- 75. What is the coefficient of the term $a^{10}b^{20}c^{30}$ in $(2x+3y+4z)^{60}$?
- 76. What is the probability that a roll a sum of 9 with two dice given that I rolled a 6?
- 77. In the US (300 million people), everyone is a male or female and likes one of 10 different colors. Show that there exist at least 3 people that have the same gender, like the same color, have the same three letter initial, and have the same birthday?
- 78. I roll two die. What is the probability that I roll a 2 given that the product of the two numbers I rolled is even.
- 79. I have 5 identical rings that I want to wear at once. How many ways can I put them on my hand (10 fingers) if it is possible to put all 5 on one finger?
- 80. How many ways can I split up 30 distinct students into 6 non-empty groups?
- 81. What is the probability that in a hand of 5 cards out of a deck of 52 cards, there is a pair of aces given that there is an ace?
- 82. How many ways can I plant 15 trees in 5 different yards if each yard has to be nonempty?
- 83. In a bag of coins, 2/3 of them are normal and 1/3 have both sides being heads. A random coin is selected and flipped and the outcome is a heads. What is the probability that it is a double head coin?
- 84. How many numbers less than or equal to 1000 are not divisible by 2, 3, or 5?

- 85. How many ways can you line up 4 couples if each couple needs to stand next to each other?
- 86. Prove that $2 + 4 + \dots + 2n = n(n+1)$ for all $n \ge 1$.
- 87. How many ways can I put 30 Snickerdoodle cookies and 20 chocolate chip cookies into 10 identical bags so that each bag has at least one Snickerdoodle cookie and one chocolate chip cookie?